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Abstract

Although a large number of methods exist for detecting damage in a structure using measured modal
parameters, many of them require a correlated finite element model, or at least, modal data of the structure
for the intact state as baseline. For one-dimensional beam-like structures, curvature techniques, e.g., mode
shape curvature and flexibility curvature, have been applied to localize damage. In this paper a damage
localization method based on changes in uniform load surface (ULS) curvature is developed for two-
dimensional plate structures. A new approach to compute the ULS curvature is proposed based on the
Chebyshev polynomial approximation, instead of the central difference method. The proposed method
requires only the frequencies and mode shapes of the first few modes of the plate before and after damage,
or only the eigenpairs for the damaged state if a gapped-smoothing technique is applied. Numerical
simulations considering different supported conditions, measurement noise, mode truncation, and sensor
sparsity are studied to evaluate the effectiveness of the proposed method. It is found that the ULS curvature
is sensitive to the presence of local damages, even with truncated, incomplete, and noisy measurements.
r 2003 Published by Elsevier Ltd.

1. Introduction

Damage generally produces changes in the structural physical properties (i.e., stiffness, mass,
and damping), and these changes are accompanied by changes in the modal characteristics of the
structure (i.e., natural frequencies, mode shapes, and modal damping). This phenomenon has
been widely noted and used by structural engineers for detecting damage or health monitoring of
a structure. Doebling et al. [1] provided an excellent review on research advances in this area over
the last 30 years, and summarized this kind of technology as vibration-based damage
identification methods.
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According to the process to treat the measured modal parameters, the vibration-based damage
identification methods can be classified as model based and non-model based. The model-based
methods identify damage by correlating an analytical model, which is usually based on the finite
element theory, with test modal data of the damaged structure [2–4]. Comparisons of the updated
model to the original one provide an indication of damage and further information on the damage
location and/or its extent. However, the construction of the finite element model usually gives rise
to model errors from simplified assumptions. To detect the damage other than the artificial errors
from the model construction, a good quality finite element model that could accurately depict the
intact structure is required but is often difficult to achieve.

Non-model-based damage detection methods, also named as damage index methods, are
relatively straightforward. The changes of modal parameters between the intact and damaged
states of the structure are directly used, or correlated with other relevant information, to develop
the damage indicators for localizing damage in the structure. Early works of damage index
methodology make use of the natural frequency and mode shape information. Shifts in the
natural frequencies [5], changes in the modal assurance criteria (MAC) across sub-structures [6],
changes in the co-ordinate modal assurance criterion (COMAC) [7], and changes in the multiple
damage location assurance criterion (MDLAC) [8] between the intact and damaged structure are
formulated as indicators to localize damage. Pandey et al. [9] further demonstrated that changes
in mode shape curvature could be a good indicator of damage for beam structures.

During the last decade, some researchers found that the modal flexibility can be a more sensitive
parameter than natural frequencies or mode shapes alone for structural damage on detection.
Raghavendrachar and Aktan [10] examined the application of modal flexibility for a three span
concrete bridge. In their comparison with natural frequency and mode shapes, the modal
flexibility is reported to be more sensitive and reliable for local damages. Zhao and Dewolf [11]
presented a theoretical sensitivity study comparing the use of natural frequencies, mode shapes,
and model flexibility for structural damage detection. The results demonstrate that modal
flexibility is more likely to indicate damage than either the other two. Pandey and Biswas [12]
proposed a damage localization method based on directly examining the changes in the measured
modal flexibility of a beam structure. Lu et al. [13] pointed out that Pandey’s method is difficult to
locate multiple damages, and they recommended the modal flexibility curvature for multiple
damage localization due to its high sensitivity to closely distributed structural damages.

Zhang and Aktan [14] comparatively studied the modal flexibility and its derivative, called
uniform load surface (ULS), for their truncation effect and sensitivity to experimental errors.
They suggested that the ULS has much less truncation effect and is least sensitive to experimental
errors. These features make it a potentially useful index for experimental non-destructive
evaluation.

So far most structural damage index methods are formulated in one-dimensional space, and
therefore they can only be applied to beam-like structure or two-dimensional structures that can
be decomposed into beam elements. In this paper, the uniform load surface curvature is proposed
as a new local damage indicator due to its high sensitivity to damage with less experimental error
effect. The curvature will be formulated using both the central difference method and the
Chebyshev polynomial approximation, which are generalized to the two-dimensional space for
plate structures. Damage can then be detected by investigating the curvature changes between the
intact and damaged state, or from only the damaged state when a gapped-smoothing technique is
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applied. Numerical simulations considering different supported conditions, measurement noise,
mode truncation, and sensor sparsity are performed to demonstrate the effectiveness of the
proposed method.

2. Theory

2.1. Definition of the uniform load surface

For a structural system with n degrees-of-freedom (d.o.f.), the flexibility matrix can be
expressed by superposition of the mass normalized modes fr as [15]

F ¼
Xn

r¼1

frf
T
r

o2
r

; ð1Þ

where or is the rth natural frequency. It can be seen from Eq. (1) that the modal contribution to
the flexibility matrix decreases rapidly as the frequency oi increases, so the flexibility matrix
converges rapidly as the number of contributing lower modes increases. This observation provides
a great possibility to approximate closely the flexibility matrix with several lower modes.

In practice, indeed, there are only several, in most cases, two to three lower vibration modes of
a structure which can be obtained with confidence from modal testing. When m lower modes are
available, the modal flexibility matrix of the structure can be approximated as

FT ¼ ½fk;l� ¼
Xm

r¼1

frf
T
r

o2
r

ð2Þ

in which the modal flexibility, fk;l ; at the kth point under the unit load at point l is the summation
of the products of two related modal coefficients for each available mode:

fk;l ¼
Xm

r¼1

frðkÞfrðlÞ
o2

r

: ð3Þ

For a linear system, the modal deflection at point k under uniform unit load all over the
structure can be approximated as

uðkÞ ¼
Xn

l¼1

fk;l ¼
Xm

r¼1

frðkÞ
Pn

l¼1 frðlÞ
o2

r

: ð4Þ

The ULS is defined as the deflection vector of the structure under uniform load [14]

UT ¼ fuðkÞg ¼ FT � L; ð5Þ

where L ¼ f1;y; 1gT
1	n is the unit vector representing the uniform load acting on the structure.

From Eqs. (3) and (4), Zhang and Aktan observed two features of the ULS comparative to the
modal flexibility. Firstly, the ULS is less sensitive to measurement noise than the modal flexibility,
because the summation of all the modal coefficients of the corresponding mode,

Pn
l¼1 frðlÞ in

Eq. (4), averages out the random error at each measuring point. The second feature is that
the ULS converges more rapidly with the lower modes than the modal flexibility. This is also
because of the summation of all the modal coefficients of each mode to the ULS in Eq. (4). Since
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the modal coefficients of higher modes tend to cancel each other more than those of the lower
modes, the lower modes tend to contribute more than the higher modes to the ULS coefficients.
This canceling effect does not exist with the modal flexibility formulation in Eq. (3). These
significant properties make the ULS a potentially stable and sensitive damage indicator for
structural health monitoring.

2.2. ULS curvature based on central difference method

Starting from this section we will focus on the damage detection with plate-like structures. It is
assumed that the dynamic response of the plate is acquired by placing sensors in a rectangular
grid, so that the mode shapes, and then the ULS can be estimated. In the absence of damage, the
ULS of the plate is a smooth surface over the loading plane. When there is a fault, sharp changes
in the ULS, like a peak or abrupt slope, will appear at the fault location. Based on the study of
damage detection with mode shapes and flexibility for beam-like structures [9,13], the curvature
technique is proven to be most efficient to locate these changes in the smooth curves. This
technique is now generalized for the plate structures characterized by two-dimensional ULS
curvature.

So far all the reported study on curvature-based damage detection computed the curvatures
using a finite central differentiation procedure. When this technique is incorporated with two-
dimensional ULS, the curvatures of the ULS are calculated by a Laplacian operator in each
normal direction along the sensor grid as

uxxðxi; yjÞ ¼
uðxiþ1; yjÞ � 2uðxi; yjÞ þ uðxi�1; yjÞ

h2
x

; ð6aÞ

uyyðxi; yjÞ ¼
uðxi; yjþ1Þ � 2uðxi; yjÞ þ uðxi; yj�1Þ

h2
y

; ð6bÞ

in which the ULS is grouped from a vector into a matrix according to the co-ordinates of
measuring points in the grid, and the grid is assumed to be equally spaced in the x and y

directions. hx; hy are the uniform grid spacings in the corresponding directions.
If two sets of measurements, one from the intact structure and the other from the damaged

structure, are taken and the modal parameters are estimated from the measurements, the ULS
curvature at point ðxi; yjÞ for the two states can be obtained using Eqs. (4) and (6). The presence of
the irregularity in the damaged curvature can be detected by subtracting the ULS curvature of the
intact state from the curvature of the damaged state. Thereby a map of damage index can be
formulated as follows:

dðxi; yjÞ ¼ ½axxjuD
xxðxi; yjÞ � uxxðxi; yjÞj þ ayyjuD

yyðxi; yjÞ � uyyðxi; yjÞj�2; ð7Þ

where j � j denotes the absolute value, uxx; uyy are the measured ULS curvature values of the intact
structure at the corresponding point along the x and y directions, respectively, and uD

xx; uD
yy are

those of the suspected damaged structure. axx and ayy are the weights that can be set from 0 to 1 to
consider the importance of the curvature in the corresponding directions.

If the structure is undamaged when the second set of measurement is carried out, the difference
between the two sets of measured ULS curvature would be due to measurement noise only.
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Therefore values of the damage index map, dðxi; yjÞ; slightly oscillate around zero without any
distinct peak. In contrast, if the structure is damaged, peaks or slopes will clearly show up at the
damaged zone of the plate, as shown in the following numerical study.

2.3. ULS curvature based on Chebyshev polynomial approximation

The accuracy of the central difference method is well known depending on the density of the
measurement grid. If the ULS values are estimated on a sparse grid, it will induce a very large
error in calculating the curvature from differentiation. The following Chebyshev polynomial in
two variables is adopted to model the ULS distribution so as to avoid this error:

uðx; yÞ ¼
XN

i¼1

XM

j¼1

CijTiðxÞTjðyÞ; ð8Þ

where TiðxÞ; TjðyÞ are the first kind Chebyshev polynomials, and N; M are their orders. To map
the standard Chebyshev polynomials from the plane domain of fx; mg ¼ ½�1; 1� 	 ½�1; 1� to the
physical plate domain of fx; yg ¼ ½0;Lx� 	 ½0;Ly�; two linear transfer functions are defined

x ¼ 2x=Lx � 1; m ¼ 2y=Ly � 1; ð9Þ

where Lx and Ly are the dimensions of the plate in the x and y directions, respectively. The
Chebyshev polynomials of variable x is then written as

T1ðxÞ ¼
1ffiffiffi
p

p ; T2ðxÞ ¼

ffiffiffi
2

p

r
2x

Lx

� 1

� �
;

Tiþ1ðxÞ ¼ 2
2x

Lx

� 1

� �
TiðxÞ � Ti�1ðxÞ; i ¼ 2; 3;y;N � 1: ð10Þ

The polynomials of variable y can be formulated similarly.
Without loss of generality, it is assumed that P ¼ N 	 M measuring points are set on the

rectangular sensor grid so that the ULS can be estimated at these points. Eq. (8) will be satisfied at
all the measuring points, and the Chebyshev polynomial approximation can be written in a matrix
form

fuðxi; yjÞgP	1 ¼ ½TðxiÞTðyjÞ�P	PfcijgP	1: ð11Þ

The coefficient vector fcijg can then be solved as

fcijgP	1 ¼ ½TðxiÞTðyjÞ��1
P	Pfuðxi; yjÞgP	1 ð12Þ

or obtained by the least squares method if the number of measuring points Q > P:

fcijgP	1 ¼ð½TðxiÞTðyjÞ�TQ	P ½TðxiÞTðyjÞ�Q	PÞ
�1

	 ½TðxiÞTðyjÞ�TQ	P fuðxi; yjÞgQ	1: ð13Þ

It is a better choice to have the measuring points at the Chebyshev zeros ð

˘

xi;

˘

yjÞ; which ensure
the convergence for any continuous function that satisfies a Dini–Lipschitz condition [16]. The
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location of these N 	 M zeros is given by

˘

xi ¼ cos
ði � 0:5Þp

N
þ 1

� �
Lx

2
; i ¼ 1;y;N; ð14aÞ

˘

yj ¼ cos
ðj � 0:5Þp

M
þ 1

� �
Ly

2
; j ¼ 1;y;M: ð14bÞ

The corresponding coefficients can be explicitly obtained as

cij ¼
l
P

XN

r¼1

XM

s¼1

uð

˘

xi;

˘

yjÞ cos
iðr � 0:5Þp

N

� �
cos

jðs � 0:5Þp
M

� �

i ¼ 1;y;N; j ¼ 1;y;M

r ¼ 1;y;N; s ¼ 1;y;M

( )
; ð15Þ

where

l ¼

1 for i ¼ 1; j ¼ 1;

2 for i ¼ 1; ja1 or ia1; j ¼ 1;

4 for ia1; ja1:

8><
>:

By making use of the orthogonal property of Chebyshev polynomial, the curvature of the ULS
can then be approximated by the second derivatives of the Chebyshev polynomials in Eq. (8) as

uxxðx; yÞ ¼
XN

i¼1

XM

j¼1

cij
@T2

i ðxÞ
@x2

TjðyÞ; uyyðx; yÞ ¼
XN

i¼1

XM
j¼1

cijTiðxÞ
@T2

j ðyÞ

@y2
ð16aÞ

and

uxyðx; yÞ ¼
XN

i¼1

XM

j¼1

cij

@TiðxÞ
@x

@TjðyÞ
@y

: ð16bÞ

Therefore, the formulation of the damage index in Eq. (7) can be rewritten as follows:

dðxi; yjÞ ¼ ½axxjuD
xx � uxxj þ ayyjuD

yy � uyyj þ axyjuD
xy � uxyj�2: ð17Þ

2.4. The gapped-smoothing technique for plates

Most damage index methods require the ‘‘footprint’’, or baseline data set, of the intact structure
for comparison to inspect the change in modal parameters due to damage. Typically, the
‘‘footprint’’ is obtained either from measurements of the undamaged structure, or from a finite
element model of the intact structure. An inaccurate finite element model can bring in large model
errors, and degrade or even lead to incorrect result in the damage detection. On the other hand,
most suspected damaged civil structures were constructed several decades ago, and the
‘‘footprint’’ of the structures in the intact state is not available. To avoid this difficulty, Ratcliffe
and Bagaria [17] proposed the ‘‘gapped-smoothing’’ technique with modal curvature, which
allows the damage detection in a beam structure without prior knowledge on the undamaged
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state. The ‘‘gapped-smoothing’’ technique is now extended and applied to bi-dimensional ULS
curvature for the plate structures.

The basic idea of the method is that the ULS curvature of the plate, without any damage, has a
smooth surface, and it can be approximated by a cubic polynomial in two variables:

*uðx; yÞ ¼ c0 þ c1x þ c2y þ c3x2 þ c4y2 þ c5xy þ c6x2y þ c7xy2; ð18Þ

where the coefficients ci can be evaluated by a curve-fitting process on the estimated ULS
curvature of the damaged structure on a gapped grid of measuring points as shown in Fig. 1.
Particularly, to obtain the smoothed ULS curvature at point ðxi; yjÞ; curvature data at all the
adjacent points, but not the point ðxi; yjÞ itself, are used to evaluate the coefficients ci: This process
is repeated for each measuring point to give a smooth ULS curvature to model the undamaged
plate structure.

The presence of the peak in the ULS curvature due to local damage can then be detected by
subtracting the smoothed curvature from the estimated curvature of the damaged structure. The
damage index map is given similar to Eq. (17) as

dðxi; yjÞ ¼ ½axxjuD
xx � *uxxj þ ayyjuD

yy � *uyyj þ axyjuD
xy � *uxyj�2: ð19Þ

3. Numerical examples

Two plates with different boundary conditions, namely a four-side simply supported plate and
a cantilever plate, are used as examples to demonstrate how the change in the ULS curvature can
be used as index to locate damage in a plate. These examples were chosen because each of them
exhibits different behavior with the load distribution. For example, in a uniformly loaded four-
side simply supported plate, both the maximum bending moment and flexural displacement occur
at the geometrical center of the plate, where flexural damage would most likely occur. In the
cantilever plate, the maximum bending moment and shear force occur at the clamped edge where
the flexural displacement is a minimum, so that the damage is usually in the form of a crack along
the fixed edge.

The configuration of the cantilever plate is shown in Fig. 2. The dimensions of the plate are
600 mm 	 480 mm with 20 mm plate thickness. The finite element model of the plate consists of
15 	 12 ¼ 180 equal size square Reissner–Mindlin plate elements. Three d.o.f., which are
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translational along the Z-axis and rotational along the X - and Y -axis, are used at each node. The
simply supported plate has the same dimensions and finite element mesh as the cantilever plate,
except with different boundary conditions.

It is assumed that damage will affect only the stiffness matrix of a structure. The change in the
stiffness matrix due to damage is modelled by a reduction in Young’s modulus of the
corresponding element. The extent of damage is then linearly related to the degree of reduction in
the Young’s modulus E:

For each damage case, the natural frequencies and corresponding mode shapes are obtained
from finite element analysis. The ULS curvatures are calculated separately using Eqs. (6) and (16).
Since the three d.o.f.s at each node in the Reissner–Mindlin plate elements are uncoupled, one is
offered choices to calculate the translational d.o.f.-based ULS curvature or rotational d.o.f.-based
curvatures. The authors’ simulation study shows that the latter is more sensitive to local damage
and less sensitive to random noise than the former. However, since there is difficulty to measure
the rotational d.o.f.s with current dynamic testing technique, only the translational d.o.f. along
the Z-axis are used in the paper. Eqs. (7), (17) and (19) are then separately used in the calculation,
of damage index based on changes in the ULS curvature and the gapped-smoothing technique.
The weights axx; ayy and axy are all taken equal to unity. The effectiveness of the methods from
central difference, and from the Chebyshev polynomial are compared. The effects of measurement
noise, mode truncation, and sensor sparsity on the ULS curvature changes are also studied with
particular damage cases.
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3.1. Simply supported plate

For the four-side simply supported plate, two different damage patterns are simulated to study
the capability of the proposed methods for sparsely distributed and closely distributed damage,
respectively. Case 1 has 75% damage in element 56, 50% damage in element 131 and 25% damage
in element 124. Case 2 has 50% damage in both elements 84 and 97. A comparison of the first
five natural frequencies for the intact case and the two damaged cases are shown in Table 1.

3.1.1. Study on truncation effect
As mentioned in Section 2.1, the ULS, as well as the modal flexibility, can be approximately

obtained from the few lower modes. However, if too few modes are identified experimentally, the
flexibility or ULS from modal parameters will generally appear stiffer than it really is, and
consequently affects the results of damage detection. The study on how many modes or what
frequency band is sufficient for the modal-based ULS from Eq. (4) leading to reliable damage
detection is called truncation effect analysis. Fig. 3 compares the changes in the exact modal
flexibility and the changes in the exact ULS due to damage Case 1 with the modal parameters
from the first three modes. The exact ULS is calculated using all the modes available in the finite
element model. The percentage truncation errors were evaluated as

feijgdu ¼
fduijgR � fduijgT

maxfduijgR

	 100%; ð20Þ

where fduijgR; fduijgT are the changes of the exact ULS and the changes of modal truncated ULS,
respectively. Truncation error on the modal flexibility was computed similarly. It can be seen that
the ULS converges more rapidly than modal flexibility with the first three lower modes. The
truncation errors in ULS are less than 6%, whereas the maximum truncation error in modal
flexibility approaches 25%. In the following studies, all the ULS curvatures for the intact and
damaged plates are estimated from the first three modes.

3.1.2. Comparison of curvature methods
The changes in the curvature of the uniform load surface for the plate with damage Case 1 are

plotted in Fig. 4. Figs. 4(a)–(c), respectively, show the results computed from Eqs. (7) and (17),
and from Eq. (19) when there is no information of the intact state. It can be clearly seen that there
is a peak located at each damage element. The more severely the element is damaged, the more
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Table 1

Natural frequencies of the simply supported plate

Mode Natural frequency (rad/s) Percentage reduction (%)

Intact Case 1 Case 2 Case 1 Case 2

1 21.324 21.165 21.121 0.751 0.961

2 31.631 31.307 31.572 1.035 0.187

3 36.298 35.858 36.266 1.227 0.088

4 43.094 42.499 42.936 1.400 0.368

5 44.011 43.875 43.670 0.310 0.781
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sharp and tall the peak looks. According to Eqs. (7), (17) and (19), the absolute value of the
damage indices, or visually the height of the peak, increases exponentially with the change in ULS
curvature, and the 25% damage in element 124 shows only a very tiny peak compared with the
75% damage in element 56. Nevertheless, it does not mean the damage with 25% stiffness
reduction is the limit the methods can detect. For this case, both the central difference method
(Fig. 4(a)) and the Chebyshev polynomial method (Fig. 4(b)) can successfully locate all the three
damaged elements, whereas, when prior knowledge on the intact structure is not available, the
Chebyshev polynomial method with gapped-smoothing technique failed to locate the damage in
element 124.

3.1.3. Resolution of damage localization
It is well known that most damage index methods can localize quite accurately the spatially

distributed damage, but suffer from detecting the contiguous multiple damages. Damage Case 2 is
specially simulated to study the effectiveness of the proposed methods for closely distributed
damages. Fig. 5 shows the results of damage detection for this case. It can be seen that the two
damaged elements 84 and 97 are located closely at the center of the plate, and they can be
separately detected by inspecting the change in ULS curvature, computed either from central
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difference or by the Chebyshev polynomial. However, when given the modal data for the
damaged state only, although the damaged region can be localized from Fig. 5(c), it is hard to tell
exactly which element is damaged.

3.2. Cantilever plate

It is always a difficult problem to the damage index methods that a damage near the supported
boundary is hard to be identified reliably. For an one-side clamped slab, it is intuitive that the
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Fig. 4. Damage index map due to damage Case 1: (a) curvature from central difference; (b) curvature from Chebyshev

polynomial; (c) curvature from Chebyshev polynomial with gapped-smoothing technique.
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damage is more likely to develop near and along the fixed edge where the maximum bending
moment occurs. Two typical damage cases for the cantilevered slab are simulated. Case 3 has 75%
damage in element 15, 50% damage in elements 13 and 14 and 25% damage in element 12. Case 4
has 75% damage in element 8, 50% damage in elements 7 and 9 and 25% damage in elements 6
and 10. The damage in Case 3 starts from one end of the fixed edge and continues along the edge
across 4 elements. The damage in Case 4 models a band of damage symmetrically located in the
middle and along the fixed edge across 5 elements. The natural frequencies for the intact and
damaged structures are listed in Table 2.
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Table 2

Natural frequencies of the cantilever plate

Mode Natural frequency (rad/s) Percentage reduction (%)

Intact Case 3 Case 4 Case 3 Case 4

1 8.051 7.932 7.879 1.478 2.183

2 11.305 10.987 11.296 2.813 0.080

3 16.561 16.32 16.541 1.455 0.121

4 22.109 21.667 22.105 1.999 0.018

5 24.765 24.442 24.310 1.304 1.872

Fig. 6. Damage index map due to damage Case 3—legends similar as Fig. 4.
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The results of damage detection for damage Cases 3 and 4 are shown in Figs. 6 and 7,
respectively. It can be seen from Fig. 6 that the damage band near the boundary can be detected
by inspecting the ULS change calculated by both methods, even without the initial curvature of
intact structure. The ULS curvature by Chebyshev polynomial method gives relatively better
localization of the damage than those from central difference with a parabolic curve surface
compared with a sharp change from central difference method with more than one peak, while the
damage location cannot be exactly validated when intact structure curvature is absent. Similar
observation can be obtained in Fig. 7.
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3.3. Effect of sensor sparsity

In a real experiment it is not practical to have a very fine sensor mesh to measure the dynamic
response of all the nodes in the finite element model. To study the effect of sensor sparsity on the
proposed methods, the sensor mesh is reduced to 7 	 5 and the locations are shown in Fig. 2,
while the nodes grid of the finite element model is 16 	 13: The damage Case 1 is studied again
with this new sensor grid on the four-side plate. First of all, the sensors are placed at an equal
spatial grid as shown in Fig. 2, and the central difference method is applied to estimate the ULS
curvature changes due to damage. Then the same number of sensors is placed on the grid points
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corresponding to the Chebyshev zeros, and the Chebyshev polynomial approximation method is
used to calculate the ULS curvature changes in the finite element grid with M ¼ 7 and N ¼ 5:
Chebyshev polynomial method is applied again when the modal data of intact structure is absent,
and the ULS curvature for the intact structure is approximated by a cubic smooth polynomial
function with the gapped-smoothing technique. Corresponding results of damage detection are
plotted in Fig. 8.

It can be seen from Fig. 8(b) that the Chebyshev polynomial method can still localize with
confidence all the three damaged element with different extent of stiffness reduction from 25 to
75%. The central difference method fails to detect the damage with 25% stiffness reduction. The
absolute values of curvature change at the damaged region degrade dramatically when compared
with Fig. 4(b), and the detected area of suspected damaged region is much larger than before.
When information on the intact structure is not available, it is fortuitous to find in Fig. 8(c) that
the damaged element 124, which is missing in Fig. 4(c), can just be detected even with the
polynomial interpolation from the coarse sensor mesh. However, the reason on this observation is
unknown.

3.4. Effect of measurement noise

According to Eq. (4), the ULS is estimated from experimentally measured natural
frequencies and mode shapes, which are liable to be contaminated by the measurement noise in
practice. Thus, in order to take into account the noise in experimentally measured modal
parameters, 1% random noise is added into the natural frequencies, and 5% noise is added into
the mode shapes. It is assumed that the random noise is uniformly distributed with zero mean and
unit variance.

Damage Case 3 in the cantilever plate is studied. Firstly, the ULS curvature change
was estimated by central difference method and plotted in Fig. 9(a). It can be seen that the
damage index is highly influenced by the measurement noise, and the damaged elements cannot
be located from this noisy map of curvature change. To remove the noise effect on the ULS
curvature, especially the high peaks near the free edge of the plate, a low order ðM ¼ 6;N ¼ 6Þ
Chebyshev polynomial function of two variables is used to smooth the oscillatory ULS. The
coefficients of this approximation are obtained from Eq. (13). Figs. 9(b) and (c) show the
estimated ULS curvature changes as the damage index map, with and without the prior
knowledge of intact structure, respectively. It is clear that a low order Chebyshev polynomial
approximation on the noisy ULS could dramatically suppress the random noise effect in
comparison with Fig. 9(a).

3.5. When the damage changes the boundary condition of the structure

An alternative approach to model damages similar to Cases 3 and 4 is adopted by freeing
all the boundary connections within the damage region of the plate. The resulting damage
index map looks similar to what we have in the last study. This indicates that the
proposed method is applicable even though the damage changes the boundary condition of
the structure.
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4. Conclusion

In the numerical examples studied, the change in the ULS curvature is found very sensitive to
local damages and robust to mode truncation effect. With only the modal data from the first few
modes, the ULS curvature can be used to indicate multiple damages quite accurately. It has been
checked that when no random noise is present, a damaged element with only 5% reduction in
stiffness can be clearly indicated. The effectiveness of this damage index is also demonstrated with
different stringent conditions: a simply supported plate with closely distributed damages, and a
cantilever plate with near boundary damages.
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Fig. 9. Damage index map due to damage Case 3 with random noise—legends similar as Fig. 4.
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In comparison to the finite central difference method, a new approach to calculate the ULS
curvature is proposed based on Chebyshev polynomial approximation. This method could not
only improve the accuracy of the calculated curvature, but also provides more operational
flexibility in damage detection process, especially for dealing with the situation of sensor sparsity
and the presence of measurement noise. When integrated with the gapped-smoothing technique,
the proposed method does not require any prior information of the intact structure.
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